Search results for "metastable state"
showing 6 items of 6 documents
Effects of Lévy noise on the dynamics of sine-Gordon solitons in long Josephson junctions
2015
We numerically investigate the generation of solitons in current-biased long Josephson junctions in relation to the superconducting lifetime and the voltage drop across the device. The dynamics of the junction is modelled with a sine-Gordon equation driven by an oscillating field and subject to an external non-Gaussian noise. A wide range of $\alpha$-stable L\'evy distributions is considered as noise source, with varying stability index $\alpha$ and asymmetry parameter $\beta$. In junctions longer than a critical length, the mean switching time (MST) from superconductive to the resistive state assumes a values independent of the device length. Here, we demonstrate that such a value is direc…
Quantum dynamics of the oxygen isotopic exchange : lifetimes of metastable states of the ozone intermediate complex
2021
This thesis aims to describe the ozone dynamics during the isotopic exchange reactions of oxygen of type xO + yO zO (xO yO zO)* xO yO + zO, where x, y and z are the atomic masses of the stable oxygen isotopes (16, 17, 18). Firstly, we analyze several methods of accurate description of the atom interactions and numerical schemes to obtain the observables for the collision. Then, in a full-quantum hyperspherical formalism, we study the actual dynamics of the reactive process O + O2 -> O3* -> O2 + O. The metastable ozone created can then either decompose into oxygen by the inverse reaction, or relax into stable ozone by exchanging energy with the environment, typically N2 or O2 molecules. Thes…
New trends in nonequilibrium statistical mechanics: classical and quantum systems
2020
The main aim of this special issue is to report recent advances and new trends in nonequilibrium statistical mechanics of classical and quantum systems, from both theoretical and experimental points of view, within an interdisciplinary context. In particular, the nonlinear relaxation processes in the dynamics of out-of-equilibrium systems and the role of the metastability and environmental noise will be overviewed. Three main areas of nonequilibrium statistical mechanics will be covered: slow relaxation phenomena and dissipative dynamics; long-range interactions and classical systems; quantum systems. New trends such as quantum thermodynamics and novel types of quantum phase transitions occ…
Phase dynamics in graphene-based Josephson junctions in the presence of thermal and correlated fluctuations
2014
In this work we study by numerical methods the phase dynamics in ballistic graphene-based short Josephson junctions. The supercurrent through a graphene junction shows a non-sinusoidal phase-dependence, unlike a conventional junction ruled by the well-known d.c. Josephson relation. A superconductor-graphene-superconductor system exhibits superconductive quantum metastable states similar to those present in normal current-biased JJs. We explore the effects of thermal and correlated fluctuations on the escape time from these metastable states, when the system is stimulated by an oscillating bias current. As a first step, the analysis is carried out in the presence of an external Gaussian whit…
Enhancement of stability in randomly switching potential with metastable state
2004
The overdamped motion of a Brownian particle in randomly switching piece-wise metastable linear potential shows noise enhanced stability (NES): the noise stabilizes the metastable system and the system remains in this state for a longer time than in the absence of white noise. The mean first passage time (MFPT) has a maximum at a finite value of white noise intensity. The analytical expression of MFPT in terms of the white noise intensity, the parameters of the potential barrier, and of the dichotomous noise is derived. The conditions for the NES phenomenon and the parameter region where the effect can be observed are obtained. The mean first passage time behaviours as a function of the mea…
The bistable system: an archetypal model for complex systems
2011
Bistable systems often play the role of archetypal models to understand the dynamical behavior of complex systems. Examples range from microphysics to macrophysics, bìology, chemistry and also econophysics. Moreover the statistical mechanics is essential to study the physical properties of complex systems and to investigate stochastic systems in which the microscopic degrees of freedom behave collectively over large scales. We investigate the nonlinear relaxation in a bistable system in classical and quantum systems. (i) As a first classical system, the role of the multiplicative and additive noise in the mean life time of the metastable state of an asymmetric bistable system is investigate…